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Abstract. In this paper, we extend to nonsmooth locally Lipschitz functionals the multiplicity
result of Brezis–Nirenberg (Communication Pure Applied Mathematics and 44 (1991)) based
on a local linking condition. Our approach is based on the nonsmooth critical point the-
ory for locally Lipschitz functions which uses the Clarke subdifferential. We present two
applications. This first concerns periodic systems driven by the ordinary vector p-Laplacian.
The second concerns elliptic equations at resonance driven by the partial p-Laplacian with
Dirichlet boundary condition. In both cases the potential function is nonsmooth, locally
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1. Introduction

The notion of local linking was first introduced by Liu and Li [23]. Soon
thereafter Brezis and Nirenberg [3] relaxed the assumptions for local link-
ing and proved a theorem on the existence of two nontrivial critical points
for a C1-functional satisfying the Palais–Smale condition. Their approach
used the Ekeland variational principle and a deformation theorem.

The purpose of this paper is to present a generalization of the multi-
plicity result of Brezis and Nirenberg. In this generalization we do not
require the energy functional to be smooth, it is only locally Lipschitz.
Also instead of the usual Palais–Smale condition, we employ the more
general Cerami condition (its nonsmooth version). However, this is no
real improvement since as it was shown by Kourogenis–Papageorgiou [9]
for functionals bounded below, the two conditions are equivalent. In the
second half of the paper we present applications of the abstract multiplicity
result to nonlinear periodic systems and to nonlinear elliptic equations
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with nonsmooth potential, known as “hemivariational inequalities”. Such
inequality problems arise in mechanics when one wants to consider more
realistic models with nonsmooth and nonconvex energy functionals. For
such applications we refer to the book of Naniewicz and Panagiotopoulos
[28]. For the mathematical aspects of the theory of hemivariational inequal-
ities, we refer to the works of Degiovanni et al. [8], Gasinski and
Papageorgiou [12,13], Goeleven et al. [14], Kyritsi and Papageorgiou [21],
Motreanu and Radulescu [27], Radulescu and Panagiotopoulos [29] and the
references therein. Also problems with discontinuities can be studied within
the mathematical framework of hemivariational inequalities. We refer to the
works of Chang [5], Costa and Goncalves [7], and Hu et al. [15].

Our approach is based on the nonsmooth critical point theory for locally
Lipschitz functionals, as this was originally formulated by Chang [5] and
extended recently by Kourogenis and Papageorgiou [18] and Kyritsi and
Papageorgiou [20]. In the next section for the convenience of the reader we
recall some basic definitions and facts from this theory.

2. Mathematical Preliminaries

The nonsmooth critical point theory for locally Lipschitz functionals is
based on the subdifferential theory of Clarke [6].

Let X be a Banach space and let X∗ be its topological dual. By (·, ·)
we denote the duality brackets for the pair (X,X∗). A function φ : X→ IR
is said to be locally Lipschitz, if for every bounded set B⊆X there exists
kB >0 such that |ϕ(x)−ϕ(y)|�kB‖x−y‖ for all x, y ∈B. This is a slightly
more restrictive version of local Lipschitzness than the one used in the lit-
erature (see, for example [6,19]), where ϕ is locally Lipschitz, if for every
u ∈ X, there exists a neighborhood U of u and a constant kU > 0 such
that |ϕ(x)−ϕ(y)|�kU‖x−y‖ for all x, y∈U. However, for the applications
on nonsmooth boundary value problems that we have in mind this more
restrictive definition is sufficient and always satisfied. Note that if X is finite
dimensional, then the two definitions are equivalent. From convex analy-
sis we know that a convex and lower semicontinuous function g : X→ IR=
IR∪{+∞} for which domg={x ∈X :g(x)<+∞} �=∅, it is locally Lipschitz
in int domg. In analogy with the directional derivative of a convex func-
tion, we define the generalized directional derivative of a locally Lipschitz
function φ at x ∈X in the direction h∈X, by

φ0(x;h)= lim sup
x′→x

λ↓0

φ(x ′ +λh)−φ(x ′)
λ

.

It is easy to see that the function h→φ0(x;h) is sublinear and continu-
ous on X. So by the Hahn–Banach theorem it is the support function of
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a nonempty, convex, w∗-compact set

∂φ(x)={x∗ ∈X∗ : (x∗, h)�φ0(x;h) for all h∈X}.

The multifunction x → ∂φ(x) is known as the generalized (or Clarke)
subdifferential of φ. If φ,ψ : X→ IR are locally Lipschitz functions, then
∂(φ + ψ)(x) ⊆ ∂φ(x) + ∂ψ(x) and for every λ ∈ IR ∂(λφ)(x) = λ∂φ(x).
Moreover, if φ is also convex, then this subdifferential coincides with the
subdifferential in the sense of convex analysis (i.e. ∂φ(x)={x∗ ∈X∗ : (x∗, y−
x)� φ(y)− φ(x) for all y ∈X} = {x∗ ∈X∗ : (x∗, h)� φ′(x;h) for all h∈X},
with

φ′(x;h)= lim
λ↓0

φ(x+λh)−φ(x)
λ

= inf
λ>0

φ(x+λh)−φ(x)
λ

,

the directional derivative of the convex function φ). If φ ∈ C1(X), then
∂φ(x)={φ′(x)}.

Let φ : X→ IR be a locally Lipschitz function. A point x ∈X is said to
be a critical point of φ if 0 ∈ ∂φ(x). If x ∈X is a critical point of φ, then
c= φ(x) is a critical value of φ. It is easy to see that, if x ∈X is a local
extremum of φ, then 0 ∈ ∂φ(x). Moreover, the multifunction x→ ∂φ(x) is
upper semicontinuous from X into X∗ equipped with the weak∗ topology,
i.e. for any U ⊆X∗ w∗-open, the set {x ∈X : ∂φ(x)⊆U} is open in X (see
[16]). For more details we refer to Clarke [6].

The critical point theory for smooth functions uses a compactness con-
dition known as the “Palais–Smale condition” (PS). In the present non-
smooth setting this condition takes the following form:

“The locally Lipschitz function φ : X→ IR satisfies the “nonsmooth PS
condition” if any sequence {xn}n�1 ⊆X such that {φ(xn)}n�1 is bounded
and m(xn) = min[‖x∗‖ : x∗ ∈ ∂φ(xn)] → 0 as n → ∞, has a strongly
convergent subsequence”.

If φ ∈C1(X), then as we already mentioned ∂φ(x)= {φ′(x)} and so the
above definition of the PS condition coincides with the classical (smooth)
one (see [30]).

In the context of the smooth theory, Cerami [4] introduced a weaker
compactness condition which in our nonsmooth setting has the following
form:

“The locally Lipschitz function φ : X → IR satisfies the “nonsmooth
Cerami condition” (nonsmooth C-condition for short), if for any sequence
{xn}n�1 ⊆ X such that the sequence {φ(xn)}n�1 is bounded and
(1+‖xn‖)m(xn)→0 as n→∞, has a strongly convergent subsequence”.



222 D. KANDILAKIS ET AL.

This weaker condition suffices to obtain a deformation theorem and
through it derive minimax theorems locating critical points. This was done
in the smooth case by Bartolo et al. [1] and in the nonsmooth case by
Kourogenis and Papageorgiou [18].

In our analysis we shall need a recent generalization of the Ekeland vari-
ational principle due to Zhong [33]. For easy reference, we recall the result.

THEOREM 1. If (V , dV ) is a complete metric space, φ : V → IR is lower
semicontinuous, bounded below and not identically +∞ and v0 ∈V is fixed,
then for every ε>0, every y ∈V such that φ(y)� infV φ+ε and every λ>0,
there exists v∈V such that

(a) φ(v)�φ(y),
(b) dV (v, v0)� r0 + r and
(c) φ(v)− ε

λ(1+dV (v0,v))
dV (v, z)�φ(z) for all z∈V

with r0 =dV (v0, y) and r >0 such that
∫ r0+r
r0

1/(1+ r)dr�λ.

Finally in the applications to nonlinear elliptic equations, we use the
principal eigenvalue of the negative p-Laplacian with Dirichlet boundary
condition, i.e. of

(
−�p,W

1,p
0 (Z)

)
. So let Z⊆ IRN be a bounded domain

with a C1,a-boundary � (0<a < 1). We consider the following eigenvalue
problem:

{−div(‖Dx(z)‖p−2Dx(z))=λ|x(z)|p−2x(z) a.e. on Z

x|� =0.

}

.

The least λ∈ IR for which this problem has a nontrivial solution is called
the first (or principal) eigenvalue of

(
−�p,W

1,p
0 (Z)

)
and is denoted by λ1.

The first eigenvalue λ1 is positive, isolated and simple (i.e. the associated
eigenspace is one-dimensional). Moreover, we have a variational character-
ization of λ1 via the Rayleigh quotient, i.e.

λ1 =min
[‖Dx‖pp

‖x‖pp :x ∈W 1,p
0 (Z), x �=0

]

.

This minimum is realized at the normalized principal eigenfunction u1.
Note that if u1 minimizes the Rayleigh quotient, then so does |u1| and so
we infer that u1 does not change sign on Z. In fact we can show that u1 �=0
a.e. on Z and from nonlinear regularity theory (see Lieberman [24]) we can
have that u1 ∈C1(Z). For details we refer to [25].
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3. Multiple Critical Points via Local Linking

In this section, we prove an abstract multiplicity result under a local link-
ing condition, extending this way the result of Brezis and Nirenberg [3].

So let X be a Banach space and φ : X→ IR a locally Lipschitz function
such that φ(0)=0.

PROPOSITION 2. If φ is bounded below and satisfies the nonsmooth
C-condition, then φ attains its infimum on X.

Proof. Let {xn}n�1 ⊆X such that φ(xn)↓ infX φ. Using Theorem 1 with
V =X, v0 = 0, ε= (1/n2) and λ= √

ε, we obtain a sequence {yn}n�1 ⊆X
such that for all n�1 we have

φ(yn)�φ(xn) (hence φ(yn)↓ inf
X
φ), ‖yn‖�‖xn‖+ r

and φ(v)�φ(yn)− 1
n(1+‖yn‖)‖v−yn‖ for all v∈X,

where r > 0 is such that
∫ ‖xn‖+r
‖xn‖ 1/(1 + r)dr � (1/n). For every v ∈X and

every t ∈ (0,1), we have

− t‖v−yn‖
n(1+‖yn‖) �φ(yn+ t (v−yn))−φ(yn)

⇒−‖v−yn‖�n(1+‖yn‖)φ(yn+ t (v−yn))−φ(yn)
t

.

Set v=yn+h, h∈X and ηn(h)=φ0(yn;h). We know that ηn(·) is sublin-
ear, continuous and so ηn(0)=0. We have

−‖h‖�n(1+‖yn‖)ηn(h) for all h∈X.

By virtue of Lemma 1.3 of Szulkin [31], we obtain u∗
n∈X∗, ‖u∗

n‖�1 such
that

(u∗
n, h)�n(1+‖yn‖)ηn(h) for all h∈X.

Set v∗
n =1/(n(1+‖yn‖))u∗

n. It follows that v∗
n ∈ ∂φ(yn), n�1, so

(1+‖yn‖)m(yn)� 1
n
‖u∗

n‖� 1
n

→0.

Since by hypothesis φ satisfies the nonsmooth C-condition, by passing to
a subsequence if necessary, we may assume that yn → y0 in X. Evidently
φ(yn)→φ(y0) and so φ(y0)= infX φ.
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Let y0 ∈X be the global minimizer of φ on X established by Proposition 2.
We assume that infX φ<0=φ(0), hence y0 �=0. Also let U be a neighborhood
of y0, Bδ={x∈X :‖x‖<δ}, U ∩Bδ=∅ and for c∈ IR let φc={x∈X :φ(x)�c}.
Evidently if c� infX φ, then φc �=∅.

PROPOSITION 3. If φ is bounded below and satisfies the nonsmooth
C-condition, c� infX φ and {y0,0} are the only critical points of φ, then there
exists γ >0 such that (1+‖x‖)m(x)�γ for all x ∈φc � (U ∪Bδ).

Proof. Suppose that the conclusion of the proposition is not true. Then
we can find xn ∈ φc � (U ∪ Bδ) such that (1 + ‖xn‖)m(xn)→ 0. Since φ

satisfies the nonsmooth C-condition we may assume that xn → x in X.
From Chang [5] we know that m(·) is lower semicontinuous. So m(x)�
lim infn→∞m(xn) = 0, hence m(x) = 0. Therefore, 0 ∈ ∂φ(x) and since by
hypothesis y0 and 0 are the only critical points of φ, it follows that x=y0

or x = 0. But x ∈ φc � (U ∪ Bδ) since the latter set is closed, we have a
contradiction.

PROPOSITION 4. If the hypotheses of Proposition 3 hold and c > 0, then
there exists v:φc � (U ∪Bδ)→X a locally Lipschitz map such that

‖v(x)‖�1+‖x‖ and for all x∗ ∈ ∂φ(x) (x∗, v(x))� γ

2

with γ >0 as in Proposition 3.
Proof. Let D=φc � (U ∪Bδ) and let B(0,m(x))={z∗ ∈X∗ : ‖z∗‖<m(x)}.

Evidently we have B(0,m(x))∩ ∂φ(x)= ∅. Since both sets are convex and
B(0,m(x)) is open, we can apply the weak separation theorem and find
u(x)∈X with ‖u(x)‖=1 such that

(z∗, u(x))� (x∗, u(x)) for all z∗ ∈B(0,m(x)) and all x∗ ∈ ∂φ(x).

Note that sup [(z∗, u(x)) : z∗ ∈B(0,m(x))]=m(x). So using Proposition 3,
we have

γ

2(1+‖x‖) <m(x)� (x
∗, u(x)) for all x∗ ∈ ∂φ(x) and all x ∈D. (1)

Recall (see Section 2) that the multifunction x → ∂φ(x) is usc from
X into X∗

w (i.e. X∗ with the weak topology). So x → (1 + ‖x‖)∂φ(x)
is usc from X into X∗

w. Let x ∈ D and let V = {y∗ ∈ X∗ : (γ /2) <
(y∗, u(x))}. Evidently V is a weakly open subset of X∗ and from (1) we
see that (1+‖x‖)∂φ(x)⊆V . Then we can find θ(x) > 0 such that for all
y ∈B(x, θ(x))∩D (B(x, θ(x))={y ∈X :‖x−y‖<θ(x)}), we have
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(1+‖y‖)∂φ(y)⊆V

⇒ γ

2(1+‖y‖) <(y
∗, u(x)) for all y∗ ∈ ∂φ(y). (2)

The collection {B(x, θ(x))}x∈D is an open cover of D. By paracompact-
ness we can find a locally finite refinement {Ui}i∈I and a locally Lips-
chitz partition of unity {ξi}i∈I subordinate to it. For each i ∈ I we can
find xi ∈D such that Ui ⊆B(xi, θ(xi)). To this xi ∈D corresponds the ele-
ment ui =u(xi)∈X with ‖ui‖=1, for which (1) holds with x=xi . Now, let
v : D→X be defined by

v(x)= (1+‖x‖)
∑

i∈I
ξi(x)ui.

Evidently this map is well defined, locally Lipschitz and

‖v(x)‖�1+‖x‖.

Moreover, from (2) we see that for every x∗ ∈ ∂φ(x) we have

(x∗, v(x))=
∑

i∈I
ξi(x)(1+‖x‖)(x∗, ui)�

γ

2

∑

i∈I
ξi(x)= γ

2
.

We continue with the hypotheses of Proposition 3 in effect. Consider the
open set U = {x ∈X :φ(x)<φ(y0)+ δ}, δ > 0. Also let ξ > 0 small so that
for all x ∈B(y0, ξ)={x ∈X :‖x−y0‖� ξ}, we have φ(x)�0.

We can choose δ>0 small so that φ(y0)+ δ<0 and

U ⊆{x ∈X :‖x−y0‖<ξ}=B(y0, ξ).

Indeed, if no such δ > 0 exists, we can find {xn}n�1 ⊆ X such that
φ(xn)↓ infX φ and ‖xn − y0‖ � ξ . Using the Ekeland variational principle
(see, for example [16], p.520) we can find {yn}n�1 ⊆X such that ϕ(yn)�
ϕ(xn) (hence ϕ(yn)↓ infX ϕ), d(xn, yn)→ 0 and m(yn)→ 0 as n→∞. Note
that since ϕ is bounded below and satisfies the nonsmooth C-condition, it
satisfies the nonsmooth PS-condition (see [19]). Hence we may assume that
yn → y in x. Then xn → y in X and we have ‖y− y0‖ � ξ, i.e. y �= y0 and
also y �=0 (since ϕ(y)= infX ϕ<0=ϕ(0)), a contradiction to the hypothesis
that {y0,0} are the only critical points of ϕ.

Without any loss of generality assume that 1<‖y0‖. Also assume that

X=Y ⊕V
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with dimY < +∞. Choose δ > 0 such that int [φc � (U ∪Bδ)] �= ∅ and
z ∈ int [φc � (U ∪Bδ)] with φ(z)� −kδ < 0 = φ(0), where k > 0 is the Lips-
chitz constant of φ on Bδ. Note that since c > 0, if we choose δ > 0
small enough we will satisfy the above requirements. Now let v :D=φc �

(U ∪Bδ)→X be the locally Lipschitz map obtained in Proposition 4. We
consider the following Cauchy problem:

⎧
⎪⎪⎨

⎪⎪⎩

dη(t)
dt

=− v(η(t))

‖v(η(t))‖2
on IR+,

η(0)= z.

⎫
⎪⎪⎬

⎪⎪⎭
. (3)

It is well-known that (3) has a unique flow.

PROPOSITION 5. If the hypotheses of Proposition 3 hold and c> 0, z∈X
and δ>0 are chosen as above, then there exists a finite time τ(z)<+∞ such
that the flow of (3) exists on [0, τ (z)] and φ(η(τ(z)))=φ(y0)+ δ.

Proof. Since z ∈ int [φc � (U ∪Bδ)] = int D, the solution of (3) exists on
a maximal open interval [0, τ (z)). Remark that the function t→φ(η(t)) is
locally Lipschitz, thus differentiable almost everywhere on (0, τ (z)). From
Chang [5] (p. 106), we know that

d
dt
φ(η(t))�max[(x∗, η′(t)) :x∗ ∈ ∂φ(η(t))]

=max
[(

x∗,− v(η(t))

‖v(η(t))‖2

)

:x∗ ∈ ∂φ(η(t))
]

�−γ0<0

a.e. on [0, τ (z)), with γ0>0.
The last inequality is a consequence of Proposition 4. From this we infer

that the function t → φ(η(t)) is strictly decreasing on [0, τ (z)) and τ(z)

� (1/γ0)(φ(z)− inf φ)<+∞. We have

φ(y0)+ δ�φ(η(t))<φ(z) for all t ∈ (0, τ (z)).

From Proposition 3 we know that

(x∗, v(η(t)))� γ

2
for all t ∈ [0, τ (z)) and all x∗ ∈ ∂φ(η(t)),

⇒‖x∗‖‖v(η(t))‖� γ

2
for all t ∈ [0, τ (z)) and all x∗ ∈ ∂φ(η(t)).

Note that for all t ∈ [0, τ (z)), η(t) ∈ φc � (U ∪ Bδ) = D. Because φ is
locally Lipschitz, bounded below and satisfies the nonsmooth C-condition,
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it is coercive (see [19]). So D is bounded. Because the subdifferential mul-
tifunction x→ ∂φ(x) is bounded (see [6], p. 27 and recall that according
to our definition ϕ is bounded on bounded sets), it follows that the set
∂φ(D)= ⋃

x∈D ∂φ(x)⊆X∗ is bounded. Therefore, we can find γ1 > 0 such
that for all t ∈ [0, τ (z)) and all x∗ ∈ ∂φ(η(t)), we have ‖x∗‖� γ1. So finally
we can say that

‖v(η(t))‖� γ

2γ1
for all t ∈ [0, τ (z)).

Therefore,
∫ τ(z)

0 η′(t)dt exists and this means that limt→τ(z) η(t)=η(τ(z))
exists. Evidently we must have η(τ(z))∈bd(φc∩ (U ∪Bδ)c). We know that

bd(φc∩ (U ∪Bδ)c)⊆bdφc∪bd(U ∪Bδ)c.

Remark that φ(η(τ(z))) < φ(z)< c and so η(τ(z)) /∈ bdφc. Therefore, we
must have that

η(τ(z))∈bd(U ∪Bδ)c=bd(Uc∩Bcδ )⊆bdUc∪bdBcδ .

If η(τ(z))∈ bdBcδ = bdBδ, then ‖η(τ(z))‖ = δ. Since φ(0)= 0 and φ|Bδ is
Lipschitz continuous with constant k, we have |φ(η(τ(z)))| � kδ, hence
−kδ � φ(η(τ(z)))� kδ. But recall that φ(η(τ(z))) < φ(z)� −kδ (from the
choice of z), a contradiction. Therefore, η(τ(z)) /∈ bdBcδ and so we must
have that η(τ(z))∈bdUc=bdU . We conclude that φ(η(τ(z)))=φ(y0)+ δ.

In the proof of the main multiplicity result, we shall need two more
auxiliary results which extend Lemma 1 and Proposition 4 of Brezis and
Nirenberg [3].

PROPOSITION 6. If R={x∈X : 0�a�‖x‖�b}, φ :R→R is locally Lips-
chitz, satisfies the nonsmooth C-condition on every closed subset of intR and
does not have any critical points in intR, then the function ξ(r)= inf [φ(x) :
‖x‖= r] satisfies: if a<r1<r <r2<b, then we have

ξ(r)>min[ξ(r1), ξ(r2)].

Proof. First note that since R is bounded, on it the nonsmooth C-condition
and the nonsmooth PS-condition are equivalent. Now suppose that the
conclusion of the Proposition is not true. We can find r1<r <r2 such that
ξ(r)� min[ξ(r1), ξ(r2)]. Let {xn}n�1 ⊆R such that ‖xn‖= r and φ(xn)< ξ(r)
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+(1/n2). From the Ekeland variational principle (see [31], p. 94) applied on
the ring R1 ={x ∈X : r1 �‖x‖� r2}, we can find yn∈R1 such that

φ(v)�φ(yn)− 1
n
‖v−yn‖ for all v∈R1

and φ(yn)�φ(xn)− 1
n
‖xn−yn‖, n�1.

We claim that yn /∈bdR1. Indeed, if yn∈bdR1, say ‖yn‖= r1, we have

ξ(r1)�φ(xn)− 1
n
(r− r1)� ξ(r)+ 1

n2
− 1
n
(r− r1),

which for n� 1 large leads to a contradiction of the hypothesis that ξ(r)
�min[ξ(r1), ξ(r2)]. So we have that yn /∈bdR1 (at least for large n�1). Therefore
for every n�1, if h∈X and t ∈ (0,1) is small, we have v=yn+ th∈R1 and so

φ(yn+ th)−φ(yn)�− t

n
‖h‖

⇒−‖h‖�nφ(yn+ th)−φ(yn)
t

⇒−‖h‖�nφ0(yn;h).

As before via Lemma 1.3 of Szulkin [31], we obtain u∗
n∈X∗ with ‖u∗

n‖�1
such that

(u∗
n, h)�nφ0(yn;h) for all h∈X

⇒ 1
n
u∗
n∈ ∂φ(yn)

⇒m(yn)�
1
n

→0.

So by passing to a subsequence if necessary, we may assume that yn→
y ∈R1 and m(y)=0, i.e. 0∈∂φ(y), a contradiction to the hypothesis that φ
has no critical points in int R.

PROPOSITION 7. If φ : BR → IR is locally Lipschitz, satisfies the non-
smooth C-condition on every closed subset of BR, φ(0)= 0, φ(x) > 0 for
all 0< ‖x‖<R and has no critical points on BR except 0, then there exists
r0 ∈ (0,R] such that ξ(r) is strictly increasing on [0, r0) and strictly decreasing
on [r0,R).
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Proof. We know that ξ(·) is upper semicontinuous on [0,R′], R′ < R
(see, for example, [16], p. 82). So we can find r0 ∈ [0,R′] such that ξ(r0)
= max[ξ(r) : 0 � r �R′]. Then the result of this Proposition follows from
Proposition 6 by letting R′ →R.

Now we are ready for the multiplicity result under local linking.

THEOREM 8. If X is a reflexive Banach space, X = Y ⊕ V with dimY

<+∞, φ:X→ IR is a locally Lipschitz function which is bounded below, sat-
isfies the nonsmooth C-condition, φ(0)= 0, infX φ < 0 and there exists r > 0
such that

φ(x)�0 for x ∈Y, ‖x‖� r,
φ(x)�0 for x ∈V, ‖x‖� r, local linking,

then φ has at least two nontrivial critical points.
Proof. We follow the ideas in the proof of Theorem 4 of Brezis and

Nirenberg [3]
From Proposition 2 we know that there exists a minimizer y0 �= 0 of φ.

Suppose that y0 and 0 are the only critical points of φ. We will derive
a contradiction, which shows that there must be at least one more criti-
cal point z0 different from y0 and 0. This way we will have at least two
nontrivial critical points for φ.

Case i: dimY >0 and dimV >0.
Without any loss of generality, we may assume that r=1<‖y0‖. Let e∈

V such that ‖e‖=1. We introduce the set

E={x ∈X :x=λe+y, y ∈Y,λ�0,‖x‖�1}.
Given x ∈ bdE, x �= e, we have ‖x‖� 1 and we can write it in a unique

way as

x=λe+µy
with 0�λ�1, y∈Y with ‖y‖=1 and 0<µ�1. Evidently by choosing c>0
large and δ>0 small we can quarantee that if y ∈Y, ‖y‖=1, then we have
y ∈ int [φc � (U ∪Bδ)]= intD. So we can define the map p∗ : bdE→ X by

p∗(y)=y if y ∈Y with ‖y‖�1, p∗(e)=y0

and p∗(λe+µy)=
{
η(2λτ(y)) if λ∈ [0,1/2],
(2λ−1)y0 + (2−2λ)η(τ(y)) if λ∈ (1/2,1].

Here η and τ(y) are as in Proposition 5. Clearly p∗ is continuous and
for all x ∈bdE we have φ(p∗(x))�0. Indeed, if x=y ∈Y with ‖y‖�1= r,
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then from the local linking hypothesis, we have that φ(p∗(x))=φ(y)�0.
If x = e, then φ(p∗(x))= φ(p∗(e))= φ(y0)= infX φ < 0, by hypothesis. If
x=λe+µy with λ∈ [0,1/2], then φ(p∗(λe+µy))=φ(η(2λτ(y)))<φ(η(0))
=φ(y)�0 since y ∈Y with ‖y‖=1= r (local linking hypothesis). Finally, if
x=λe+µy with λ∈ (1/2,1], then p∗(x)= (2λ− 1)y0 + (2 − 2λ)η(τ(y)) and
as λ moves from (1/2) to 1, then p∗(x) covers the segment 〈η(τ(y)), y0〉
={x∈X : (1−θ)η(τ (y))+θy0, 0�θ�1}. So ‖p∗(x)−y0‖= (2−2λ)‖η(τ(y))
−y0‖� ξ , hence φ(p∗(x))�0.

Note that we can find 0< γ2 � 1 such that ‖p∗(x)‖ � γ2 for all x ∈E
with ‖x‖ = 1. We fix 0<ρ <γ2. From Lemma 3 of Brezis and Nirenberg
[3] we know that the sets p∗(bdE) and S={v∈V :‖v‖=ρ} link (i.e. for any
continuous extension p of p∗ on all of E, we have p(E)∩S �= ∅, see [30],
p. 116). Let �={p∈C(E,X) :p|bdE=p∗} and set c0 = infp∈� supx∈E φ(p(x)).
Note that c0 � 0. Also from Theorem 5 of Kourogenis and Papageorgiou
[18], we have that c0 is a critical value of φ. If c0>0, then the correspond-
ing critical point is the second nontrivial critical point of φ. If c0 =0, then
again from Theorem 5 of Kourogenis and Papageorgiou [18], we can pro-
duce a critical point of φ located on S with critical value c0. Therefore, we
obtain a third critical point distinct from y0 and 0, a contradiction.

Case ii: dimY =0.
If y0 is the only nonzero critical point of φ, then by the local linking

hypothesis we can find ρ1 > 0 such that φ(x) > 0 for all x �= 0, ‖x‖<ρ1.
So by Proposition 7, we can find ρ2> 0 small so that for all ‖x‖= ρ2 we
have φ(x)� γ3 > 0. Since φ(0)= 0> φ(y0), we can apply the nonsmooth
Mountain Pass Theorem of Kourogenis and Papageorgiou [18] to obtain a
second nontrivial critical point of φ distinct from y0 and 0, contradicting
our initial hypothesis.

Case iii: dimV =0 (in fact for this case we can allow dimY =+∞).
From Proposition 6 we know that we can find ρ3 > 0 small so that

φ(x)�−γ4<0 for all ‖x‖ = ρ3. Also recall that φ is coercive (see [19]).
So we can apply the nonsmooth Mountain Pass Theorem of Kourogenis
and Papageorgiou [18] on the functional −φ and for paths joining 0 and
u with φ(u)>0 and y0 /∈<0, u>={λu, λ∈ [0,1]}. So invoking this theorem
(see [18], Theorem 6) we obtain a critical point z0 ∈X with critical value
φ(z0)>φ(u)>0=φ(0)>φ(y0). So z0 �=0, z0 �=y0. Therefore, again we have
a third critical point z0 distinct from y0 and 0, contradicting once more our
initial hypothesis.

4. Applications

In this section, we present applications of Theorem 8 to nonlinear peri-
odic and elliptic problems with nonsmooth potential.We start with periodic
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systems. So we consider the following problem:
⎧
⎨

⎩

(‖x ′(t)‖p−2x ′(t)
)′ ∈ ∂j (t, x(t)) a.e. on T = [0, b]

x(0)=x(b), x ′(0)=x ′(b), 2�p<∞

⎫
⎬

⎭
. (4)

Here ∂j (t, x) stands for the generalized subdifferential of the locally
Lipschitz map j (t, ·).

In the past, multiplicity results were obtained for scalar (i.e. N = 1),
semilinear (i.e. p = 2) problems with smooth potential (see, for example
[10,11]). Recently Tang [32] considered semilinear systems (i.e. N > 1)
with smooth potential and proved multiplicity results. The corresponding
study for quasilinear problems involving the ordinary p-Laplacian is lag-
ging behind. To our knowledge the only work in this direction is that of
Del Pino et al. [9], where the problem under consideration is scalar, the
nonlinearity f (t, x) is jointly continuous (in particular then the potential
F(t, x)=∫ x

0 f (t, r)dr is C1) and they employ conditions on the interaction
of f with the Fučik spectrum of the differential operator.

Our hypotheses on nonsmooth potential j (t, x) are the following:

H(j)1: j : T × IRN → IR is a function such that j (t,0)=0 a.e. on T and

(i) for all x ∈ IRN, t→ j (t, x) is measurable;
(ii) for almost all t ∈T , x→ j (t, x) is locally Lipschitz;

(iii) for almost all t ∈T , all x ∈ IRN and all u∈ ∂j (t, x) we have

‖u‖�a(t)(1+‖x‖θ ) with a∈L1(T ) and 0� θ <p−1;

(iv)
1

‖x‖θq
∫ b

0
j (t, x)dt→+∞ as ‖x‖→∞, x ∈ IRN,

1
p

+ 1
q

=1;

(v) for almost all t ∈T and all ‖x‖�1, we have j (t, x)�− 1
bpp

‖x‖p;
(vi) there exists δ̂ >0 such that for almost all t ∈T and all ‖x‖� δ̂, we

have j (t, x)� 0 and there exists c0 ∈ IRN such that j (t, c0)<0 for
almost all t ∈T .

Let W 1,p
per (T , IRN)={x ∈W 1,p(T , IRN) : x(0)=x(b)} and let φ: W 1,p

per (T , IRN)

→ IR be defined by

φ(x)= 1
p

‖x ′‖pp+
∫ b

0
j (t, x(t)) dt .

We know that φ is locally Lipschitz (in the sense of being Lipschitz on
bounded sets, see [17], p. 313).

PROPOSITION 9. If hypotheses H(j)1 hold, then φ satisfies the nonsmooth
PS-condition.
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Proof. Let {xn}n�1 ⊆W 1,p
per (T , IRN) be a sequence such that

|φ(xn)|�M1 for some M1>0 and all n�1 and m(xn)→0.

Let x∗
n ∈ ∂φ(xn) such that m(xn)=‖x∗

n‖, n� 1. Also let A :W 1,p
per (T , IRN)

→W
1,p
per (T , IRN)∗ be the nonlinear operator defined by

〈A(x), y〉=
∫ b

0
‖x ′(t)‖p−2(x ′(t), y ′(t))IRN dt for all x, y ∈W 1,p

per (T , IR
N).

Here by 〈·, ·〉 we denote the duality brackets for the pair (W 1,p
per (T , IRN),

W
1,p
per (T , IRN)∗). It is easy to see that A is demicontinuous, monotone, thus

maximal monotone. We have

x∗
n =A(xn)+un, n�1

with un∈Lθ ′
(T , IRN), un(t)∈ ∂j (t, xn(t)) a.e. on T (see [6], p. 47).

We claim that {xn}n�1 ⊆W 1,p
per (T , IRN) is bounded. To this end, we con-

sider the direct sum decomposition W
1,p
per (T , IRN) = IRN ⊕ V , where V

={v∈W 1,p
per (T , IRN) :

∫ b
0 v(t)dt=0}. So given x ∈W 1,p

per (T , IRN) we write in a
unique way x=x+ x̂ with x ∈ IRN, x̂ ∈V . From the choice of the sequence
{xn}n�1 ⊆W 1,p

per (T , IRN) we have

|〈A(xn), x̂n〉+ (un, x̂n)θθ ′ |� εn‖x̂n‖ with εn↓0. (5)

Here by (·, ·)θ,θ ′ we denote the duality brackets for the pair (Lθ(T , IRN),

Lθ
′
(T , IRN)). From hypothesis H(j)1(iii), we have that

∣
∣
∣(un(t), x̂n(t))IRN

∣
∣
∣�a(t)(1+‖xn+ x̂n(t)‖θ )‖x̂n(t)‖
�a(t)‖x̂n(t)‖+2θ−1‖xn‖θ‖x̂n(t)‖

+2θ−1‖x̂n(t)‖θ+1 a.e. on T ,

⇒
∣
∣
∣
∣

∫ b

0
(un(t), x̂n(t))IRN dt

∣
∣
∣
∣

�‖a‖1‖x̂n‖∞ +2θ−1b‖x̂n‖θ+1
∞ +2θ−1b

(
ε

p
‖x̂n‖p∞ + 1

εq
‖xn‖θq

)

�β1‖x̂ ′
n‖p+β2‖x̂ ′

n‖θ+1
p +β3

ε

p
‖x̂ ′

n‖pp+β4(ε)‖xn‖θq (6)
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for ε > 0 and some β1, β2, β3, β4(ε)> 0. In obtaining (6) we have used the
Poincaré–Wirtinger inequality (see [26], p. 8). Note that 〈A(xn), x̂n〉=‖x̂ ′

n‖pp.
So returning to (5) and using these facts, we obtain

‖x̂ ′
n‖pp−β1‖x̂ ′

n‖p−β2‖x̂ ′
n‖θ+1
p −β3

ε

p
‖x̂ ′

n‖pp−β4(ε)‖xn‖θq �M2‖x̂n‖

for some M2>0 and all n�1, hence

(

1−β3
ε

p

)

‖x̂ ′
n‖pp− (β1 +M3)‖x̂ ′

n‖p−β2‖x̂ ′
n‖θ+1
p �β4(ε)‖xn‖θq (7)

for some M3>0 and all n�1. Again we have used the Poincaré–Wirtinger
inequality. Let ε>0 be small enough so that β3

ε
p
<1. We shall show that

‖x̂ ′
n‖p−1
p �β5‖xn‖θ +β6 for some β5, β6>0 and all n�1. (8)

Indeed if {x̂n}n�1 ⊆W 1,p
per (T , IRN) is bounded, then (8) is clear. Otherwise

suppose that ‖x̂n‖→∞ hence ‖x̂ ′
n‖p→+∞. Then from (7) we have

β7‖x̂ ′
n‖pp−β8‖x̂ ′

n‖θ+1
p �β4(ε)‖xn‖θq for some β7, β8>0 and all n�1

⇒β9‖x̂ ′
n‖pp�β4(ε)‖xn‖θq +β10 for some β9, β10>0 and all n�1.

From this and since (p/q)=p−1, we obtain (8).
Let Sn(t) = {(u, λ) ∈ IRN × (0,1) : u ∈ ∂j (t, xn + λx̂n(t)), j (t, xn + x̂n(t))

− j (t, xn)= (u, x̂n(t))IRN }. From Lebourg’s mean value theorem (see [6], p.
41, and [22]), we know that for almost all t ∈ T ,Sn(t) �= ∅. By redefining
Sn on the exceptional Lebesgue-null set, we may assume that Sn(t) �= ∅ for
all t ∈ T . We claim that for every h∈ IRN , the function (t, λ)→ j 0(t, xn +
λx̂n(t);h) is measurable on T × (0,1). To this end, from the definition of
the generalized directional derivative, we have

j 0(t, xn+λx̂n(t);h)

= inf
m�1

sup
[
j (t, xn+λx̂n(t)+ r+ sh)− j (t, xn+λx̂n(t)+ r)

s
:

r ∈QN ∩B(1/m)(0), s ∈Q∩
(

0,
1
m

)]

⇒ (t, λ)→ j 0(t, xn+λx̂n(t);h) is measurable on T × (0,1).
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Set Gn(t, λ)= ∂j (t, xn +λx̂n(t)) and {hm}m�1 ⊆ IRN be a dense sequence.
Since j 0(t, xn+λnx̂n(t); ·) is continuous, we have

GrGn = ∩m�1{(t, λ, u)∈T × (0,1)× IRN : (u, hm)IRN

� j 0(t, xn+λx̂n(t);hm)}
⇒GrGn∈L(T )×B(I )×B(IRN)

with L(T ) being the Lebesgue σ -field of T and B(I ) (resp B(IRN)) the
Borel σ -field of I = (0,1) (resp. of IRN ). So we can apply the Yankov-von
Neumann–Aumann selection theorem (see Hu-Papageorgiou [16], p. 158)
to obtain Lebesgue measurable maps un:T → IRN and λn:T → I such that
(un(t), λn(t))∈Sn(t) for all n�1. So we have

φ(xn)= 1
p

‖x ′
n‖pp+

∫ b

0
j (t, xn(t))dt

= 1
p

‖x ′
n‖pp+

∫ b

0
j (t, xn+ x̂n(t))dt−

∫ b

0
j (t, xn)dt+

∫ b

0
j (t, xn)dt

= 1
p

‖x̂ ′
n‖pp+

∫ b

0
(un(t), x̂n(t))IRN dt+

∫ b

0
j (t, xn)dt

with un(t)∈∂j (t, xn+λn(t)x̂n(t)) a.e. on T . From the choice of the sequence
{xn}n�1 ⊆W 1,p

per (T , IRN), we have φ(xn)�M1 for all n�1. So

1
p

∥
∥x̂ ′

n

∥
∥p
p
+

∫ b

0
(un(t), x̂n(t))IRN dt+

∫ b

0
j (t, xn)dt�M1 .

Using (6) we have

1
p

‖x̂ ′
n‖pp−β1‖x̂ ′

n‖p−β2‖x̂ ′
n‖θ+1
p

−β3
ε

p
‖x̂ ′

n‖pp−β4(ε)‖xn‖θq +
∫ b

0
j (t, xn)dt�M1

⇒
(

1
p

−β3
ε

p

)

‖x̂ ′
n‖pp−β1‖x̂ ′

n‖p−β2‖x̂ ′
n‖θ+1
p

−β4(ε)‖xn‖θq +
∫ b

0
j (t, xn)dt�M1 .
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Choose ε>0 so that ε<(1/β3). From the last inequality we have

β11‖x̂ ′
n‖pp−β1‖x̂ ′

n‖p−β2‖x̂ ′
n‖θ+1
p

+‖xn‖θq
(

1
‖xn‖θq

∫ b

0
j (t, xn)dt−β4(ε)

)

�M1 (9)

for some β11>0 and all n� 1. If {x̂ ′
n}n�1 ⊆Lp(T , IRN) is unbounded, then

we may assume that ‖x̂ ′
n‖p →∞ and so from (8) we have that ‖xn‖→∞.

So if we pass to the limit in (9) and using hypothesis H(j)1(iv) and the
fact that θ+1<p, we reach a contradiction. Hence {x̂ ′

n}n�1 ⊆Lp(T , IRN) is
bounded. Suppose that ‖xn‖→∞. Then again from (9) by passing to the
limit and using hypothesis H(j)1(iv), we have a contradiction. Therefore we
infer that {xn}⊆W 1,p

per (T , IRN) is bounded. Thus we may assume that xn
w→x

in W
1,p
per (T , IRN) and xn→x in C(T , IRN). We have

〈A(xn), xn−x〉+ (un, xn−x)θθ ′ � εn‖xn−x‖� εnM3

for some M3>0 and all n�1. Evidently {un}n�1 ⊆Lθ ′
(T , IRN) is bounded.

So (un, xn−x)θθ ′ →0, hence

lim sup
n→∞

〈A(xn), xn−x〉�0.

But A being maximal monotone, is generalized pseudomonotone and so
〈A(xn), xn〉 → 〈A(x), x〉 ⇒ ‖x ′

n‖p → ‖x ′‖p. Since x ′
n

w→ x ′ in Lp(T , IRN) and
the latter is uniformly convex, from the Kadec-Klee property we conclude
that x ′

n→x ′ in Lp(T , IRN), hence xn→x in W
1,p
per (T , IRN).

PROPOSITION 10. If hypotheses H(j)1 hold, then φ is bounded below.
Proof. For every x∈W 1,p

per (T , IRN), we have (see the proof of Proposition 9)

φ(x)= 1
p

‖x ′‖pp+
∫ b

0
(j (t, x+ x̂(t))− j (t, x))dt+

∫ b

0
j (t, x)dt

= 1
p

‖x ′‖pp+
∫ b

0
(u(t), x̂(t))IRN dt+

∫ b

0
j (t, x)dt

(with u∈Lθ ′
(T , IRN), u(t)∈ ∂j (t, x+λ(t)x̂(t)) a.e.)
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� 1
p

‖x̂ ′‖pp−β1‖x̂ ′‖p−β2‖x̂ ′‖θ+1
p −β3

ε

p
‖x̂ ′‖pp−β4(ε)‖x‖θq

+
∫ b

0
j (t, x)dt (see (6))

=
(

1
p

−β3
ε

p

)

‖x̂ ′‖pp−β1‖x̂ ′‖p−β2‖x̂ ′‖θ+1
p

+‖x‖θq
(

1
‖x‖θq

∫ b

0
j (t, x)dt−β4(ε)

)

.

Choosing ε < (1/β3) and since θ + 1 < p, from the last inequality it
follows that φ is coercive, hence it is bounded from below.

Using Propositions 9 and 10, we can have the following multiplicity
result for problem (4).

THEOREM 11. If hypotheses H(j)1 hold, then problem (4) has at least two
distinct nontrivial solutions x1, x2 ∈C1(T , IRN).

Proof. From hypothesis H(j)1(vi) we have that inf φ < 0. Also from
hypothesis H(j)1(v), for almost all t ∈T and all ‖x‖� 1 we have −(1/bpp)
‖x‖p�j (t, x). Again we consider the direct sum decomposition W 1,p

per (T , IRN)

= IRN ⊕ V . Let v ∈ V with ‖v′‖ � 1
b(1/q)

. Recall that ‖v‖∞ � b
1
q ‖v′‖p �

1 (Poincaré–Wirtinger inequality, see [26],p. 8). So for v ∈ V with
‖v‖= (‖v‖pp+‖v′‖pp)

1
p � 1

b1/q = δ, we have ‖v‖∞ �1 and so

φ(v)= 1
p

‖v′‖pp+
∫ b

0
j (t, v(t))dt

� 1
p

‖v′‖pp− 1
bp−1p

‖x‖p

� 1
p

‖v′‖pp− 1
bpp

b‖v‖p∞

� 1
p

‖v′‖pp− 1
p

‖v′‖pp=0.

If 0<ε<β1, we have φ(v)�0 for all v∈V with ‖v‖� δ1.
In addition by virtue of hypothesis H(j)1(vi), we can find δ2 > 0 such

that if x ∈ IRN ⊆ W
1,p
per (T , IRN) and ‖x‖ � δ2, then φ(x) � 0. Thus if

δ3 =min{δ1, δ2}, we have
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φ(v)�0 for all v∈V, ‖v‖�δ3 and φ(y)�0 for all y∈IRN, ‖y‖�δ3.

Therefore, we can apply Theorem 8 and obtain x1 �= x2, x1, x2 �= 0 such
that 0∈ ∂φ(xk), k=1,2. Let y=xk, k=1,2. We have

A(y)=u with u∈Lθ ′
(T , IRN), u(t)∈ ∂j (t, y(t)) a.e. on T ,

⇒〈A(y),ψ〉= (u,ψ)θθ ′ for all ψ ∈C∞
0 ((0, b), IR

N)

⇒
∫ b

0
‖y ′(t)‖p−2(y ′(t),ψ ′(t))IRN dt=

∫ b

0
(u(t),ψ(t))IRN dt

⇒−(‖y ′(t)‖p−2y ′(t))′ = u(t) a.e. on T , y(0)=y(b) (10)

Hence ‖y ′(·)‖p−2y ′(·) ∈W 1,θ (T , IRN)⊆ C(T , IRN) and since the map ξ :
IRN → IRN defined by ξ(x)=‖x‖p−2x is a homeomorphism, it follows that
y ′ ∈ C(T , IRN), hence y ∈ C1(T , IRN). Also if v ∈ W 1,p

per (T , IRN), then by
integration by parts and using (10), we obtain

‖y ′(0)‖p−2(y ′(0), v′(0))IRN =‖y ′(b)‖p−2(y ′(b), v′(b))IRN

for all v∈W 1,p
per (T , IR

N)

⇒‖y ′(0)‖p−2y ′(0)=‖y ′(b)‖p−2y ′(b)

⇒y ′(0)=y ′(b). �

Remark. Let p> 3 and consider the following nonsmooth locally Lips-
chitz in x ∈R

N function:

j (t, x)=
{

− 1
bpp

‖x‖p if‖x‖�1,

η(t)‖x‖ 3
2 −η(t)− 1

bpp
if‖x‖>1,

, η∈L1(T )+.

Then j (t, x) satisfies hypotheses H(j)1.

Next we consider a Dirichlet problem for nonlinear hemivariational
inequalities at resonance. So let Z ⊆ IRN be a bounded domain with a
C1-boundary �. We examine the following problem:

{−div (‖Dx(z)‖p−2Dx(z)
)−λ1|x(z)|p−2x(z)∈ ∂j (z, x(z)) a.e. on Z

x|� =0,2�p<∞.

}

.

(11)
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Again ∂j (z, x) is generalized subdifferential of the generally nonsmooth
locally Lipschitz potential j (z, x). Our hypotheses on j (z, x) are the follow-
ing:

H(j)2: j :Z× IR→ IR is a function such that j (z,0)=0 a.e. on Z and

(i) for all x ∈ IR, z→ j (z, x) is measurable;
(ii) for almost all z∈Z, x→ j (z, x) is locally Lipschitz;

(iii) for almost all z∈Z, all x ∈ IR and all u∈ ∂j (z, x) we have

|u|�a(z)+ c|x|p−1 with a∈L∞(Z), c>0;

(iv) there exist β >0 and 0<µ<p such that

lim inf
|x|→∞

ux−pj (z, x)
|x|µ >β or lim sup

|x|→∞

ux−pj (z, x)
|x|µ <−β

uniformly for almost all z ∈ Z and all u ∈ ∂j (z, x) and j (z, x)

�γ (z) a.e. on Z for |x|�M, γ ∈L1(Z);
(v) lim supx→0

pj (z,x)

|x|p �0 uniformly for almost all z∈Z;
(vi) there exists δ>0 such taht for all |x|� δ we have

∫
Z
j (z, x) dz�0

and there exists ξ ∈ IR such that
∫
Z
j (z, ξu1(z)) dz>0.

We consider the functional φ:W 1,p
0 (Z)→ IR defined by

φ(x)= 1
p

‖Dx‖pp− λ1

p
‖x‖pp−

∫

Z

j (z, x(z)) dz.

Again φ is locally Lipschitz (in the sense of being Lipschitz on bounded
sets).

PROPOSITION 12. If hypotheses H(j)2 hold, then φ satisfies the non-
smooth C-condition.

Proof. We assume that in hypothesis H(j)2(iv) the first alternative holds.
The proof is similar if the second alternative is in effect.

So let {xn}n�1 ⊆W 1,p
0 (Z) be a sequence such that

|φ(xn)|�M1 for some M1>0 and all n�1

and (1+‖xn‖)m(xn)→0 as n→∞.

Let x∗
n ∈ ∂φ(xn) be such that m(xn) = ‖x∗

n‖, n � 1. We have x∗
n

= A(xn) − λ1|xn|p−2 − un, with A : W 1,p
0 (Z)→W−1,q(Z) being defined by

〈A(x), y)〉 = ∫
Z

‖Dx(z)‖p−2(Dx(z),Dy(z))IRN dz for all x, y ∈W 1,p
0 (Z) and
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un∈Lq(Z), un(z)∈∂j (z, xn(z)) a.e. on Z (here by 〈·, ·〉 we denote the dual-
ity brackets for the pair

(
W

1,p
0 (Z),W−1,q(Z)

)
). Because (1 + ‖xn‖)m(xn)

→0, we can say that |<x∗
n, xn > |� (1/n). So

−‖Dxn‖pp+λ1‖xn‖pp+ (un, xn)pq � 1
n
. (12)

Also, since |pφ(xn)|�pM1 for all n�1, we have

‖Dxn‖pp−λ1‖xn‖pp−p
∫

Z

j (z, xn(z))dz�pM1. (13)

Adding (12) and (13), we obtain
∫

Z

(un(z), xn(z)−pj (z, xn(z)))dz� 1
n

+pM1. (14)

By virtue of hypothesis H(j)2(iv), we can find M2 > 0 such that for
almost all z∈Z, all |x|�M2 and all u∈ ∂j (z, x), we have

β

2
|x|µ<ux−pj (z, x). (15)

Using the Lebourg mean value theorem and hypothesis H(j)2(iii), we see
that for amost all z∈Z and all x ∈ IR, we have

|j (z, x)|�a1(z)(1+|x|p) with a1 ∈L∞(Z). (16)

From (16) and hypothesis H(j)2(iii) it follows that for almost all z∈Z,
all |x|<M2 and all u∈ ∂j (z, x), we have

|ux−pj (z, x)|�a2(z) with a2 ∈L∞(Z). (17)

So from (15) and (17), we see that for almost all z∈Z, all x ∈ IR and all
u∈ ∂j (z, x), we have

β

2
|x|µ−a3(z)�ux−pj (z, x) with a3 ∈L∞(Z).

Returning to (14), we have

β

2
‖xn‖µµ�

∫

Z

(un(z)xn(z)−pj (z, xn(z)))dz+‖a3‖1 � 1
n

+pM1 +‖a3‖1

⇒‖xn‖µ� c1 for all n�1, i.e. {xn}n�1 ⊆Lµ(Z) is bounded. (18)
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As usual, let p∗ be the Sobolev critical exponent, i.e.

p∗ =
{

Np

N−p if N >p

+∞ if N�p .

Choose r�1 such that

p<r <min
{

p∗, p
max{N,p}+µ

max{N,p}
}

.

From (16) we see that for almost all z∈Z and all x ∈ IR we have that

j (z, x)� c2 + c3|x|r with c2, c3>0. (19)

Set θ =
{
p∗(r−µ)
r(p∗−µ) if N >p,

1− µ

r
if N �p.

Note that 0 < θ < 1 and (1/r) = (1 − θ)/µ + (θ/p∗). So from the
interpolation inequality (see [2], p. 57), from (18) and from the Sobolev
embedding theorem, we obtain

‖xn‖r �‖xn‖1−θ
µ ‖xn‖θp∗ � c4‖xn‖θ with c4>0. (20)

Recall that φλ(xn)�M1 for all n� 1. Using this fact, inequality (19),
the continuity of the embedding Lr(Z) into Lp(Z) (since p < r), Young’s
inequality and (20), we obtain

1
p

‖Dxn‖pp� λ1

p
‖xn‖pp+ c2|Z|+ c3‖xn‖rr +M1

� c5‖xn‖pr + c2|Z|+ c3‖xn‖rr +M1

� c6 + c7‖xn‖rr + c2|Z|+ c3‖xn‖rr +M1

� c8 + c9‖xn‖rr � c8 + c10‖xn‖θr

for some c5, c6, c7, c8, c9, c10 > 0. From this and Poincaré’s inequality, we
obtain

‖Dxn‖pp� c11‖Dxn‖θrp + c12 with c11, c12>0. (21)

If N >p, then Nr <Np+µp and so

θr= p∗(r−µ)
p∗ −µ = Np

N −p
(r−µ)(N −p)
Np−Nµ+µp <

Np

N −p
(r−µ)(N −p)
Nr−Nµ =p.
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If N �p, then r <min
{
p∗, pmax{N,p}+µ

max{N,p}
}

=p((p+µ)/(p))=p+µ and so
r−µ<p. Hence

θr=
(

1− µ

r

)
r= r−µ<p.

So in both cases we have seen that θr < p. Therefore from (21) and
Poincaré’s inequality it follows that {xn}n�1 ⊆W

1,p
0 (Z) is bounded. So we

may assume that xn
w→ x in W

1,p
0 (Z) and xn → x in Lp(Z). Arguing as in

the proof of Proposition 9, via the generalized pseudomonotonicity of A
(being maximal monotone) and the Kadec–Klee property, we obtain that
xn→x in W

1,p
0 (Z).

Consider the direct sum decomposition

W
1,p
0 (Z)= IRu1 ⊕V

with V = {v ∈W 1,p
0 (Z) :

∫
Z
vu

p−1
1 dz= 0}. Recall that u1 is the normalized

principal eigenfunction of
(
−�p,W

1,p
0 (Z)

)
and u1(z)>0 for all z∈Z

PROPOSITION 13. If hypotheses H(j)2 hold, then there exists δ1> 0 such
that if v∈V , ‖v‖� δ1, then φ(v)�0.

Proof. By virtue of hypothesis H(j)2(v), given ε > 0 we can find δ > 0
such that for almost all z∈Z and all |x|� δ we have |j (z, x)|� c1|x|r . So
finally for almost all z∈Z and all x ∈ IR, we can write that j (z, x)� ε

p
|x|p

+ c1|x|r . For every v∈V we have

φ(v)= 1
p

‖Dv‖pp− λ1

p
‖v‖pp−

∫

Z

j (z, v(z))dz

� 1
p

(

1− λ1

λV
− ε

λV

)

‖Dv‖pp− c2‖Dv‖rp,

where λV = inf
{ ‖Dv‖pp

‖v‖pp :v∈V, v �=0
}

. Since λ1 is isolated, λ1<λV . So we can
choose ε>0 small so that λ1 + ε<λV . Hence we have

φ(v)� c3‖Dv‖pp− c2‖Dv‖rp

� c4‖v‖p− c5‖v‖r for some c4, c5>0 (by Poincaré’s inequality).

Since r >p, we can find δ1>0 such that if ‖v‖� δ1, then φ(v)�0.
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THEOREM 14. If hypotheses H(j)2 hold, then problem (11) has at least
two distinct nontrivial solutions.

Proof. Let δ2 = (δ/‖u1‖∞) and |θ |�δ2. Then |θu1(z)|�δ for all z∈Z and
so by hypothesis H(j)2(vi) and since ‖D(θu1)‖pp = λ1‖θu1‖pp, we have that
φ(θu1)� 0. Also φ(ξu1)� 0, so inf φ < 0. Moreover from the last part of
hypothesis H(j)2(iv), we see that φ is bounded below.

Finally, let δ3 =min{δ1, δ2}. Then we have

φ(x)=
{

�0 if ‖x‖� δ3, x ∈V,
�0 if ‖x‖� δ3, x ∈ IRu1,

local linking.

Therefore, we can apply Theorem 8 and obtain two distinct, nontrivial crit-
ical points of φ. Easily we check that these are distinct nontrivial solutions
of (11).

Remark. If a∈L∞(Z)+, 2<p<5 and

j (z, x)=
{
a(z)x5 if |x|<1,
a(z)(2|x|−x2)+ sin x− sin 1 if |x|�1,

then hypotheses H(j)2 are satisfied (the first alternative in H(j)2(iv)). In
this case we can take µ=2.
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